148 lines
3.4 KiB
Python
148 lines
3.4 KiB
Python
#import numpy as np
|
|
#import itertools
|
|
#import json
|
|
#import math
|
|
#import collections
|
|
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
|
|
from scipy.optimize import minimize
|
|
|
|
from gekko import GEKKO
|
|
|
|
"""
|
|
Global Parameters
|
|
S: Stock price at adjustment
|
|
T: Tax baseline
|
|
a: Slope
|
|
M: Number of cycles (maximum of 24*6 = 144)
|
|
"""
|
|
S = 11360
|
|
T = 0.045
|
|
a = 20
|
|
M = 144
|
|
|
|
|
|
"""
|
|
Function to minimize
|
|
This one is for python
|
|
"""
|
|
def to_optimize_(x, m):
|
|
global S, T, M
|
|
res = 0
|
|
for i in range(m): #Ineffective when plotting (O(m^2))
|
|
res += x[i]*( a*(M - (i+1)) - x[i]*T*(S + a*i))
|
|
return res # We minimize the opposite function
|
|
|
|
"""
|
|
Gekko function.
|
|
Function to minimize
|
|
"""
|
|
def to_optimize(x, m):
|
|
global S, T
|
|
res = 0
|
|
for i in range(M):
|
|
res += x[i]*( a*(M - (i+1)) - x[i]*T*(S + a*i))
|
|
return -res # We minimize the opposite function
|
|
|
|
"""
|
|
GEKKO optimizer
|
|
"""
|
|
def optimize():
|
|
global L, T
|
|
|
|
m = GEKKO(remote=False)
|
|
x = m.Array(m.Var, M, lb=0, ub=10, integer=True) # Lower bound is 0: no order, upper bound is 10: hyper-multicoining
|
|
|
|
m.options.SOLVER=1
|
|
m.options.IMODE = 3
|
|
m.options.COLDSTART=1
|
|
m.solver_options = ['maximum_iterations 10000']
|
|
m.Minimize(to_optimize(x, m))
|
|
m.solve(disp=True)
|
|
return x
|
|
|
|
|
|
#def save_result(res):
|
|
#
|
|
# print(res)
|
|
# d = dict()
|
|
# for i in range(len(L)):
|
|
# d[L[i]] = round(int(res[i].value[0]))
|
|
#
|
|
#
|
|
# with open(PATH_OUT, "w") as f:
|
|
# json.dump(d, f)
|
|
|
|
def display_strategy(x):
|
|
s = {}
|
|
m = -1
|
|
index = 0
|
|
toprint = ""
|
|
for i in range(len(x)):
|
|
if x[i] != m:
|
|
toprint = "[Change@" + str(i) + "\t:x" + str(int(x[i])) + "]"
|
|
m = x[i]
|
|
s[i] = x[i]
|
|
print(toprint)
|
|
return s
|
|
|
|
def plot_results(x, s):
|
|
fig, ax = plt.subplots()
|
|
|
|
M = len(x)
|
|
X = [i for i in range(M)]
|
|
|
|
# Naive Strategies to plot
|
|
n_strats = [i for i in range(1, 5)]
|
|
|
|
# Plot the straight strategies
|
|
for n in n_strats:
|
|
xx = [n for _ in range(M)]
|
|
Y = [to_optimize_(xx, m) for m in X]
|
|
ax.scatter(X, Y, marker = "+", label = "Constant x{}".format(n))
|
|
|
|
# Plot optimized strategy
|
|
Y = [to_optimize_(x, m) for m in X]
|
|
ax.scatter(X, Y, marker = "^", label = "Optimized")
|
|
|
|
for cycle, n in s.items():
|
|
ax.annotate("x{}".format(int(n)), textcoords = "offset pixels", xytext = (0, 10), xy = (X[cycle], Y[cycle]))
|
|
|
|
# Display parameters
|
|
textstr = '\n'.join((
|
|
r'Coin price at adjustment: {}'.format(S),
|
|
r'Tax baseline: {}'.format(T),
|
|
r'Slope extrapolation: {}'.format(a),
|
|
r'Number of cycles: {}'.format(M)))
|
|
props = dict(boxstyle='round', facecolor='white', alpha=0.5)
|
|
|
|
# place a text box in upper left in axes coords
|
|
ax.text(0.12, 0.98, textstr, transform=ax.transAxes, fontsize=14,
|
|
verticalalignment='top', bbox=props)
|
|
|
|
#ax.set_yscale("log")
|
|
#ax.set_xscale("log")
|
|
ax.legend(loc="upper left")
|
|
ax.set_xlabel("Cycle")
|
|
ax.set_ylabel("Profit")
|
|
ax.set_title("Profit using naive and optimized strategies")
|
|
ax.grid(True)
|
|
plt.show()
|
|
|
|
|
|
def main():
|
|
#x = [3 for _ in range(M)]
|
|
#res = to_optimize(x, 0)
|
|
#print(res)
|
|
res = optimize()
|
|
res_ = [x.value[0] for x in res]
|
|
print("Net profit with strategy x: ", to_optimize_(res_, M))
|
|
print("Strategy vector:")
|
|
s = display_strategy(res_)
|
|
plot_results(res_, s)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|